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Poissonian traffic

Poissonian traffic: model of traffic where time is continuous and
the inter-arrival times between packets are i.i.d. random variables
of exponential law E xp(λ), λ> 0.
History: used by Erlang to model incoming phone calls at call
centers of the Copenhagen Telephone Company (1909)
→ optimized dimensioning of the call centers, mainly number of
human operators and number of cord boards at that time.

Telephone Operators, Washington DC, USA, by Harris & Ewing, 1915
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Counting process: definition

Framework: continuous time stochastic processes

Definition (counting process)

Three different descriptions of a counting process:

Ï Arrival times (Tn)n∈N in R+: T0 = 0, if m < n, then Tm ≤ Tn a.s.

Ï Inter-arrival times (In)n∈N∗ in R+
Ï Counter (Nt )t∈R+ in N∪ {∞}: if s < t , then Ns ≤ Nt a.s.

equivalent via the next relations:

Ï ∀n ≥ 1, Tn = I1 +·· ·+ In

Ï ∀n ≥ 1, In = Tn −Tn−1

Ï ∀t ≥ 0, Nt = sup{n ∈N|Tn ≤ t }

Ï ∀n ≥ 0, Tn = inf{t ∈R+|Nt ≥ n}
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Poisson process: definition

Definition (poisson process)

Let λ> 0, a poisson process of intensity λ is a counting process where
inter-arrivals (In)n∈N∗ are i.i.d. exponential laws of parameter λ.
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Poisson process: sum of exponential clocks

Proposition (0/1 law of cumulative exponential clocks)

Let (En)n≥1 independent r.v. of respective laws E xp(λn) with λn > 0.

Then


P

( ∞∑
n=1

En =∞
)
= 1 if

∞∑
n=1

1
λn

=∞

P

( ∞∑
n=1

En =∞
)
= 0 if

∞∑
n=1

1
λn

<∞

Corollary

Given a poisson process, P(Tn →∞) = 1 and thus Nt is finite a.s.
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Poisson process: sum of exponential clocks

Proof of 0/1 law of cumulative exponential clocks:
Random variable T∞ =∑∞

n=1 En has values in R+∪ {∞}
Use monotone convergence of E:
E(T∞) =∑∞

n=1E(En) =∑∞
n=1 1/λn ∈R+∪ {∞}

Thus if E(T∞) =∑∞
n=1 1/λn <∞, of course P(T∞ =∞) = 0

Using monotone convergence of E and independence,

E(e−T∞) =
∞∏

n=1
E(e−En ) =

∞∏
n=1

(1+ 1

λn
)−1

since E(e−En ) = ∫ ∞
0 λne−λn x e−x d x =λn/(1+λn)

Remark that
∑∞

n=1 1/λn =∞ iff
∏∞

n=1(1+1/λn)−1 = 0, thanks to a
classical lemma: let (an) non negative reals,

∏∞
n=1(1+an) converges

iff
∑∞

n=1 an converges.
Thus if

∑∞
n=1 1/λn =∞, then E(e−T∞) = 0 and P(T∞ =∞) = 1.
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Poisson process: markov property

Proposition (poisson processes are markovian)

Let (Nt )t∈R+ a poisson process of intensity λ. Then for all s ≥ 0,
(Nt+s −Ns)t∈R+ is a poisson process of intensity λ, indep of (Nr )0≤r≤s
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Poisson process: markov property

Proof: at time s (the present), suppose that the counter is at state
i ∈N, consider {Ns = i } = {Ti ≤ s < Ti+1} = {Ti ≤ s}∩ {s < Ti + Ii }
Inter-arrivals (I ′n) for (Nt+s −Ns)t∈R+ satisfy:

I ′1 = Ii+1 − (s −Ti ) and I ′n = Ii+n for n ≥ 2
Condition on {Ns = i } and I1, . . . , Ii (i.e. for any set of events {Ik ∈ Bk }
where Bk borelian of R): I ′1 ∼ E xp(λ) due to the memoryless
property of Ii+1 ∼ E xp(λ) (i.e. P(Ii+1 > v +u|Ii+1 > v) =P(Ii+1 > u))
and is independent of (In)n 6=i+1 as Ii+1. Moreover, for all n ≥ 2,
I ′n = Ii+n ∼ E xp(λ) are independent, and independent of I1, . . . , Ii .
To sum up, conditional on {Ns = i }, (I ′n) are i.i.d ∼ E xp(λ) and
independent of I1, . . . , Ii , thus independent of (Nr )0≤r≤s .
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Poisson process: Gamma law

Proposition (law of poisson arrival times)

For a poisson process of intensity λ, the arrival time Tn follows the
Gamma distribution Γ(n,λ) of density f (t ) = λn t n−1

(n−1)! e−λt 1R+(t )

Proof: by induction on n. True for n = 1: clearly Γ(1,λ) = E xp(λ).
Suppose Tn ∼ Γ(n,λ). Then Tn+1 = Tn + In+1 with In+1 ∼ E xp(λ)
indep of Tn . Thus the density of Tn+1 is the convolution:

f (t ) =
∫

u+v=t

1

(n −1)!
λnun−1e−λu1R+(u)λe−λv1R+(v)du

= λn+1e−λt

(n −1)!

∫ t

u=0
un−1du

= λn+1e−λt

(n −1)!

t n

n
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Poisson process: Poisson law

Proposition (law of poisson counters)

For a poisson process of intensity λ, the counter Nt follows the
Poisson distribution P (λt ).

Proof: {Nt = n} = {Tn ≤ t < Tn+1}, hence:

P(Nt = n) =P(Tn ≤ t )−P(Tn+1 ≤ t )

=
∫ t

x=0

λn xn−1

(n −1)!
e−λx d x −

∫ t

x=0

λn+1xn

n!
e−λx d x

=
∫ t

x=0

λn

n!

[
nxn−1e−λx −λxne−λx]

d x

= λn

n!

[
xne−λx]x=t

x=0

= λn

n!
t ne−λt = (λt )n

n!
e−λt
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Poisson process: equivalent definitions

Theorem (characterizations of poisson processes)

Let λ> 0 and a counting process, the next statements are equivalent:

1 Inter-arrivals: In i.i.d. ∼ E xp(λ)

2 Macro-increments: ∀0 ≤ t0 ≤ t1 ≤ ·· · ≤ tn , the increments
Ntn −Ntn−1 ,...,Nt1 −Nt0 are indep and have respective laws
P (λ(tn − tn−1)),...,P (λ(t1 − t0))

3 Micro-increments: increments are indep and uniformly in t ,
P(Nt+ε−Nt = 0) = 1−λε+o(ε), P(Nt+ε−Nt = 1) =λε+o(ε)

Vocabulary: "uniformly in t" = o(ε) doesn’t depend on t

Proof (1) ⇒ (2): markov + poisson distribution for counters
Proof (2) ⇒ (1): (3) defines a unique process, thus same as (1)
Proof (2) ⇒ (3): P(Nt+ε−Nt = 0) = e−λε, P(Nt+ε−Nt = 1) = e−λελε
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Poisson process: equivalent definitions

Proof (3) ⇒ (2): for all n ≥ 2, P(Nt+ε−Nt = n) = o(ε) uniformly in t .
Set pn(t ) =P(Nt = n). Then for all n ≥ 1,

pn(t +ε) =P(Nt+ε) =∑n
i=0P(Nt+ε−Nt = i )P(Nt = n − i )

= (1−λε+o(ε))pn(t )+ (λε+o(ε))pn−1(ε)+o(ε)

Thus pn (t+ε)−pn (t )
ε =−λpn(t )+λpn−1(t )+o(1)

Since this estimate is uniform in t , we can change t into t −ε,
yielding for all t ≥ ε, pn (t )−pn (t−ε)

ε =−λpn(t −ε)+λpn−1(t −ε)+o(1)
Letting ε ↓ 0, pn(t ) continuous and differentiable such that:
p ′

n(t ) =−λpn(t )+λpn−1(t ). In the same way, p ′
0(t ) =−λp0(t )

Initial conditions: N0 = 0 a.s. thus p0(0) = 1 and pn(0) = 0 for n ≥ 1
Solve (by induction on n): pn(t ) = e−nt (λt )n

n!
Thus Nt ∼P (λt ). Then note that for any s ≥ 0, (Nt+s −Ns)t∈R+ also
satisfies (3), yielding Nt+s −Ns ∼P (λt ). Independence of
increments is present both in (3) and (2).
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Poisson process: transformations

Corollary (superposition of indep poisson processes)

If two poisson processes of intensity λ (resp λ′) and counter (Nt )t∈R+
(resp. (N ′

t )t∈R+) are independent, then (Nt +N ′
t )t∈R+ is a poisson

process of intensity λ+λ′.

Sketch of proof: use micro-increments characterization (3)

P(Nt +N ′
t = 0) =P(Nt = 0, N ′

t = 0)
indep= P(Nt = 0)P(N ′

t = 0)

P(Nt +N ′
t = 1)

indep= P(Nt = 0)P(N ′
t = 1)+P(Nt = 1)P(N ′

t = 0)

Proposition (thinning of a poisson process)

Given a poisson process and (Bn)n∈N∗ i.i.d. ∼B(p) indep of (Tn).
Then the two counting processes defined by arrival times
{Tn s.t. Bn = 1}, resp. {Tn s.t. Bn = 0}, are indep and of respective
intensities λp and λ(1−p).
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Poisson process: limit theorems

Definition: arrival rate up to time t
def=Nt

t

Question: evolution of Nt
t when t →+∞ ?
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Poisson process: limit theorems

Theorem (LLN and CLT for poisson processes)

Given a poisson process of intensity λ> 0, then

Nt

t
a.s.−→

t→+∞λ and
p

t

(
Nt

t
−λ

)
law−→

t→+∞ N (0,λ)

Proof of LLN: first note that NTn = n.

LLN for Tn : Tn
n = I1+···+In

n
a.s.−→

n→+∞
1
λ since (In) i.i.d. ∼ E xp(λ).

Let t ∈R+, ∃n ∈N, Tn ≤ t < Tn+1, which also satisfies t →+∞ iff
Tn →+∞ iff n →+∞ (since Tn ↗+∞). Bound and let t →+∞:

n

n +1

n +1

Tn+1︸ ︷︷ ︸
−→λ

a.s.

= n

Tn+1
= NTn

Tn+1
≤ Nt

t
≤ NTn+1

Tn
= n +1

Tn
= n

Tn

n +1

n︸ ︷︷ ︸
−→λ

a.s.
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Continuous time MC: definition

Definition (continous time MC)

(X t)t∈R+ markovian if ∀n ∈N, ∀t0 < ·· · < tn < tn+1,
∀x0, . . . , xn , xn+1 ∈ E,
P(X tn+1 = xn+1|X tn = xn , . . . , X t0 = x0) =P(X tn+1 = xn+1|X tn = xn)

Definition (continous time HMC)

(X t)t∈R+ markovian and homogeneous if ∀n ∈N,
∀t0 < ·· · < tn < tn+1, ∀x0, . . . , xn , xn+1 ∈ E,
P(X tn+1 = xn+1|X tn = xn , . . . , X t0 = x0) =P(X tn+1−tn = xn+1|X0 = xn)

Notation for HMC: pi j (t ) =P(X t = j |X0 = i ) and P (t ) = (pi j (t ))i , j∈E .
Discrete time HMC: P (n) = P n where
P = P (1) = (P(X1 = j |X0 = i ))i , j∈E

Continuous time HMC: P (t ) when t → 0 ?
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Continuous time HMC: semigroup structure

Proposition (semigroup of transition matrices)

Let (X t )t∈R+ HMC on E, then its transition matrices P (t ), t ∈R+, form
a sub-semigroup of stochastic matrices, called transition semigroup:

1 P (t ) is a stochastic matrix ∀t ≥ 0

2 P (0) = I dE the identity matrix on E

3 P (s + t ) = P (s)P (t ), ∀s, t ≥ 0

Remark: semigroup structure = (2) + (3)
Proof: (3) = Chapman-Kolmogorov equations still valid at
continuous times
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Continuous time HMC: semigroup structure

Definition (continuous semigroup)

A semigroup of matrices P (t ), t ∈R+, is continuous if
lim
ε↓0

P (ε) = P (0) = I dE (pointwise convergence).

Theorem (local characteristics of continuous semigroups)

Let P (t ), t ∈R+, be a continuous transition semigroup on a
countable space E. Then

1 ∀i ∈ E, ∃qi
def= lim

ε↓0

1−pi i (ε)
ε ∈R+∪ {∞}

2 ∀i , j ∈ E, ∃qi j
def= lim

ε↓0

pi j (ε)
ε ∈R+
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Continuous time HMC: infinitesimal generator

Definition (infinitesimal generator)

Let P (t ), t ∈R+, be a continuous transition semigroup on a countable
space E, its infinitesimal generator is Q = (qi j )i , j∈E with qi i =−qi .

Compact notation: Q = lim
ε↓0

P (ε)−P (0)
ε
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Continuous time HMC: stability & conservation

Definition (stability & conservation)

Let Q the infinitesimal generator of a continuous transition
semigroup, this semigroup is called

1 stable if ∀i ∈ E, qi <∞
2 conservative if ∀i ∈ E, qi =∑

j 6=i qi j

Remark: always true when E finite

Use:
∑

j∈E
pi j (ε) = 1 implies 1−pi i (ε)

ε = ∑
j 6=i

pi j (ε)
ε and qi = lim

ε↓0

∑
j 6=i

pi j (ε)
ε

Thus stability & conservation ensures that we can invert lim and
∑

:

lim
ε↓0

∑
j 6=i

pi j (ε)
ε = ∑

j 6=i
lim
ε↓0

pi j (ε)
ε
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Continuous time HMC: regular jump HMC

Definition (regular jump process)

A stochastic process (X t )t∈R+ is a jump process if for almost all ω ∈Ω,
∀t ≥ 0, ∃ε(t ,ω) > 0 such that X t+s(ω) = X t (ω), ∀s ∈ [t , t +ε(t ,ω)[.
It is called regular if, in addition, for almost all ω ∈Ω, the set D(ω) of
discontinuities of t 7→ X t (ω) satisfies ∀t ≥ 0, |D(ω)∩ [0, t ]| <∞.

Interpretation: trajectories with staircase shape (jump process)
and no accumulation point of discontinuities (regular).
Regular jump HMC: HMC which is also a regular jump process

Theorem (regular jump HMC ⇒ stable & conservative)

A regular jump HMC is stable and conservative.
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Jump processes: transition times

Proposition (transition times & embedded process)

For a jump process (X t )t∈R+ (not necessarily regular), there exists a
sequence of time r.v. (τn)n≥0 and state r.v. (Xn)n≥0 such that:
τ0 = 0 < τ1 < τ2 < ·· · and ∀τn ≤ t < τn+1, X t = Xn .
We call (τn) the transition times and (Xn) the embedded process.

Interpretation: Xn = state after n jumps, where we stay during time
interval [τn ,τn+1[ (holding period)

Proposition (explosion time)

The explosion time is τ∞ = limn τn . If the jump process is regular,
then τ∞ =∞ a.s.
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Jump processes: regular vs non-regular

Trajectory of a Trajectory of a
regular jump process non-regular jump process
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Kolmogorov’s differential systems: finite state space

Proposition (continuous time HMC over finite state space)

Let (X t )t∈R+ HMC over finite E, then it is a regular jump HMC, with
continuous, conservative and stable transition semigroup. Moreover,
let Q its infinitesimal generator,

d
d t P (t ) = P (t )Q = P (t )Q (Kolomogorov’s differential systems)

With initial condition P (0) = I , its unique solution is P (t ) = exp(tQ).

Reminder: exp(M)
def= ∑∞

n=0
M n

n! well defined for M ∈M|E |(R)

Proof: from P (t +ε) = P (t )P (ε) = P (ε)P (t ), transform into
P (t+ε)−P (t )

ε = P (t ) P (ε)−I
ε = P (ε)−I

ε P (t )
Then ε ↓ 0 with no issue to invert lim and

∑
(finite sums)
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Kolmogorov’s differential systems: general case

Theorem (backward Kolmogorov differential system)

Let (X t )t∈R+ HMC over E with continuous transition semigroup and
infinitesimal generator Q, if it is conservative and stable,
Kolmogorov’s backward differential system holds:

d
d t P (t ) =QP (t )

Theorem (forward Kolmogorov differential system)

Let (X t )t∈R+ HMC over E with continuous transition semigroup and
infinitesimal generator Q, if it is conservative and stable and
moreover ∀i E, ∀t ≥ 0,

∑
j∈E pi j (t )q j <∞, Kolmogorov’s forward

differential system holds:
d

d t P (t ) = P (t )Q
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Evolution of laws: global balance

Vector notation of the law ν(t ) of r.v. X t with values in E :
ν(t ) = (νi (t ))i∈E line vector with νi (t )

def= P(X t = i )

Proposition (evolution of laws)

Let (X t )t∈R+ HMC over E with transition semigroup P (t ), t ∈R+, then
∀s, t ≥ 0, ν(s + t ) = ν(s)P (t )

Theorem (global balance)

Let (X t )t∈R+ HMC over E with continuous semigroup and
infinitesimal generator Q, if it is conservative and stable and if ν(t )
distribution over E satisfies ∀t ≥ 0,

∑
i∈E qiνi (t ) <∞, then

Kolmogorov’s global differential system holds:
d

d t ν(t ) = ν(t )Q
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Invariant distribution: definition

Definition (Invariant/stationnary distribution)

Invariant distribution for transition semigroup P (t ), t ∈R+:
probability distribution π= (πi )i∈E ∈RE+, i.e.

∑
i∈E πi = 1, such that

∀t ∈R+, πP (t ) =π.

Remark: same as discrete time HMC, but does not directly
simplifies to a unique equation like πP =π.

Proposition (Invariant distribution for finite state space)

Let (X t )t∈R+ HMC over finite E, with infinitesimal generator Q, then
π invariant distribution iff πQ = 0

Sketch of proof: use Kolmogorov’s differential system or the
exponential form of P (t )

πQ = 0 ⇔∀n ≥ 1,πQn = 0 ⇔π
∑∞

n=0
t n

n! Q
n =π⇔πP (t ) =π
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Regular jumps over countable state space

Theorem (regular jump HMC)

Let (X t )t∈R+ regular jump HMC over countable state space E, with
transition semigroup P (t ), t ∈R+, then

1 semigroup P (t ), t ∈R+, is continuous, stable and conservative

2 Kolmogorov’s backward and forward differential systems are
satisfied, as well as global balance differential systems

3 probability distribution π on E is invariant for the HMC iff
πQ = 0, where Q infinitesimal generator.

In practice: most models from computer science or related fields
(logistics, transportation, ...) using continuous time HMC have
regular jumps.
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Regular jump HMC: new characterization

Theorem (regenerative structure)

Let (X t )t∈R+ regular jump HMC over countable state space E, with
infinitesimal generator Q, transition times (τn) and embedded
process (Xn), then:

Ï (Xn) discrete time HMC with transition proba pi j = qi j

qi
if qi > 0

Ï Given (Xn)n≥0, holding times (τn+1 −τn)n≥0 are indep and
respectively follow an exponential law of parameter qXn

Vocabulary: embedded process of regular jump HMC also called
embedded HMC
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Regular jump HMC: new characterization

Theorem (concurrent exponential clocks)

Consider a jump process (X t )t∈R+ such that, given X t = i , an indep
clock with exponential law of parameter λi j indicates the waiting
time before a jump to j for each state j (by convention λi j = 0 if no
possible jump from i to j ). The jump occurs to the state with smallest
waiting time and all clocks are reset. Then if ∀i , λi =∑

j λi j <∞, this
process is a regular jump HMC with infinitesimal generator Q such
that qi j =λi j .

Use: useful to identify continuous time HMC during modelization
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Nice continuous-time HMC: summary

Up to adding assumptions (especially when the state space is
countable but not finite), there exists four points of vue (which can
be put into characterizations) of the nice regular jump HMC:

1 markovian description: P (0) = I d , P (s + t ) = P (s)P (t )

2 infinitesimal description: dP
d t (t ) =QP (t ) = P (t )Q

3 discrete event system (DES) description: alternation of
exponential waiting times and jumps with discrete time
embedded markov chain

4 other DES description: concurrent jumps with exponential
waiting times
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Regular jump HMC: structure

Definition (irreducibility/recurrence/t-positive recurrence)

Ï A regular jump HMC is irreducible if its embedded HMC is
irreducible.

Ï A state i is recurrent if it is recurrent in the embedded HMC

Ï A state i is t-recurrent positive if Ei [Ti ] <∞

Remark: t-positive recurrence may differ from positive recurrence
in the embedded HMC due to holding times.

Proposition

An irreducible recurrent regular jump HMC with invariant measure
ν is t-positive recurrent iff

∑
i ν(i ) <∞.
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Regular jump HMC: ergodicity

Definition (Ergodic continuous-time HMC)

An irreducible regular jump HMC is called ergodic if it is t-positive
recurrent.

Theorem (Criterion of ergodicity)

An irreducible regular jump HMC with infinitesimal generator Q is
ergodic iff there exists a probability distribution π on E such that
πQ = 0 (invariant distribution). In that case, π is unique.
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Regular jump HMC: asymptotic behavior

Theorem (Asymptotic behavior of transition probabilities)

Let (X t )t∈RR+ be an ergodic regular jump HMC over E with transition
semigroup (P (t ))t∈R+ , then: ∀i , j ∈ E , limt→∞ pi j (t ) =π j where π is
the (unique) invariant distribution.

Theorem (Ergodic theorem)

Let (X t )t∈RR+ be an ergodic regular jump HMC over E, and π its
(unique) invariant distribution, then:

limt→∞ 1
t

∫ t
0 f (X (s))d s =∑

i∈E f (i )πi a.s.
for any initial distribution µ and any f : E →R such that∑

i∈E | f (i )|πi <∞.

M1IF - ENS Lyon Performance Evaluation & Networks 34/38



Poisson processes
Continuous time Markov Chains

Definitions
Kolmogorov’s differential systems
Invariant distribution

Regular jump HMC: examples

Example 1: Two states switch, with respective waiting times E xp(λ)
and E xp(µ), λ,µ> 0

Structure: irreducible, finite nb of states

Infinitesimal generator: Q =
(−λ λ

µ −µ
)

Invariant distribution: πQ = 0 =⇒ π0 = µ
λ+µ , π1 = λ

λ+µ
Transition matrices: Q2 =−(λ+µ)Q ⇒ Qn = (−(λ+µ))n−1Q

P (t ) = e tQ = I +
∞∑

n=1

t n

n!
(−(λ+µ))n−1Q = I − 1

λ+µ (e−(λ+µ)t −1)Q

= 1

λ+µ
(
µ+λe−(λ+µ)t λ−λe−(λ+µ)t

µ−µe−(λ+µ)t λ+µe−(λ+µ)t

)
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Regular jump HMC: examples

Example 2: Poisson processes of intensity λ> 0

Structure: states = N, not irreducible, not recurrent

Infinitesimal generator: Q = (qi j ) with qi (i+1) =λ, qi i =−λ
Invariant distribution: πQ = 0 has no proba distribution as
solution

Remark: particular case of pure birth process

B in the transition graph of Q, loops (qi i ) are usually not pictured

M1IF - ENS Lyon Performance Evaluation & Networks 36/38



Poisson processes
Continuous time Markov Chains

Definitions
Kolmogorov’s differential systems
Invariant distribution

Regular jump HMC: examples

Example 3: M/M/1 Queue with exponential E xp(µ) i.i.d. service
times and exponential E xp(λ) i.i.d. interarrival times, λ,µ> 0

Structure: states = N, irreducible

Infinitesimal generator: Q = (qi j ) with qi (i+1) =λ, qi (i−1) =µ
Invariant distribution:
πQ = 0 ⇐⇒ input flow = output flow everywhere
Observe input/output from {0, . . . ,n}: πnλ=πn+1µ

Invariant non null measure: πn = λn

µn π0,
∑

n πn <∞ iff λµ < 1

Vocabulary: at the stationary regime = assume that starting
distribution is the invariant distribution (if it exists and unique)

M1IF - ENS Lyon Performance Evaluation & Networks 37/38



Poisson processes
Continuous time Markov Chains

Definitions
Kolmogorov’s differential systems
Invariant distribution

Regular jump HMC: examples

Example 4: M/M/3 Queue = like M/M/1 but with 3 indep servers
(same service)

Structure: states = N, irreducible

Invariant distribution: use the same kind of calculations
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